Asymmetric Structure-preserving Subgraph Queries for Large Graphs

Zhe FAN, Byron CHOI, Jianliang XU
Hong Kong Baptist University

Sourva S. Bhowmick
Nanyang Technological University

Research Problem

- **Client**
 - Issue subgraph query Q

- **Service Provider (SP)**
 - Own the data graph G
 - Evaluate the subgraph query
 - Return Yes or No

- **Attack Model**
 - Honest-but-Curious
 - Chosen Plaintext Attack (CPA)

- **Privacy Target**
 - Structure of query graph Q (adjacency matrix M_Q)

- **Problem Formulation**
 - Evaluate subgraph query with preserving the privacy target under the attack model

Challenges and Contributions

- **Challenges**
 - How to reduce the candidate mappings with preserving the query structure?
 - How to verify the candidate mappings without leaking the query structure?

- **Contributions**
 - A new candidate subgraph exploration
 - A novel neighborhood containment class
 - An efficient subgraph cache to prune redundant matching
 - A robust encoding scheme and verification method
 - Privacy analysis and extensive experiments

Structure-preserving Subgraph Isomorphism

- **Pre-processing at the client**
 - Retrieve optimization parameters
 - Encode entries of M_Q
 - Encrypt the encoded M_Q (CGBE)

- **Verification at the client**
 - Decrypt and obtain the encoding

- **Reducing Candidate Mappings**
 - Generate Candidate Subgraphs
 - Minimize Candidate Subgraphs
 - Generate Candidate Matchings
 - Prune Candidate Matchings
 - Generate Candidate Mappings

- **Verifying Candidate Mappings**
 - SPVerify: Aggregate constant mappings and negligible positive
 - SPVerify*: Queries with bounded size and negligible positive

Privacy analysis

- Privacy of the encryption scheme
 - CGBE is secure under CPA
 - M_Q is protected under CGBE

- Privacy of SPsubiso
 - Query structure is not used in reducing candidate mappings
 - Fixed number of mathematical operations regardless of the query structure in verifying candidate mappings

Experimental Evaluation

- Evaluate with real-world datasets on commodity machine
 - DBLP, Amazon, Youtube and LiveJournal
 - Intel i7 3.4GHz, 16GB

SUGAR: SecUre GrAph queRy services http://www.comp.hkbu.edu.hk/~bchoi/sugar.html